Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems

نویسندگان

  • Daisuke Tamaoki
  • Ichirou Karahara
  • Takumi Nishiuchi
  • Tatsuya Wakasugi
  • Kyoji Yamada
  • Seiichiro Kamisaka
چکیده

Recent studies have shown that hypergravity enhances lignification through up-regulation of the expression of lignin biosynthesis-related genes, although its hormonal signalling mechanism is unknown. The effects of hypergravity on auxin dynamics were examined using Arabidopsis plants that were transformed with the auxin reporter gene construct DR5::GUS. Hypergravity treatment at 300 g significantly increased β-glucuronidase activity in inflorescence stems of DR5::GUS plants, indicating that endogenous auxin accumulation was enhanced by hypergravity treatment. The hypergravity-related increased expression levels of both DR5::GUS and lignin biosynthesis-related genes in inflorescence stems were suppressed after disbudding, indicating that the increased expression of lignin biosynthesis-related genes is dependent on an increase in auxin influx from the shoot apex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems

Differential organ growth during gravitropic response is caused by differential accumulation of auxin, that is, relative higher auxin concentration in lower flanks than in upper flanks of responding organs. Auxin responsive reporter systems such as DR5::GUS and DR5::GFP have usually been used as indicators of gravitropic response in roots and hypocotyls of Arabidopsis. However, in the infloresc...

متن کامل

Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana.

BACKGROUND AND AIMS The xylem plays an important role in strengthening plant bodies. Past studies on xylem formation in tension woods in poplar and also in clinorotated Prunus tree stems lead to the suggestion that changes in the gravitational conditions affect morphology and mechanical properties of xylem vessels. The aim of this study was to examine effects of hypergravity stimulus on morphol...

متن کامل

Alteration of auxin polar transport in the Arabidopsis ifl1 mutants.

The INTERFASCICULAR FIBERLESS/REVOLUTA (IFL1/REV) gene is essential for the normal differentiation of interfascicular fibers and secondary xylem in the inflorescence stems of Arabidopsis. It has been proposed that IFL1/REV influences auxin polar flow or the transduction of auxin signal, which is required for fiber and vascular differentiation. Assay of auxin polar transport showed that the ifl1...

متن کامل

Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis.

To elucidate the cellular functions of phospholipase A(2) in plants, an Arabidopsis cDNA encoding a secretory low molecular weight phospholipase A(2) (AtsPLA(2)beta) was isolated. Phenotype analyses of transgenic plants showed that overexpression of AtsPLA(2)beta promotes cell elongation, resulting in prolonged leaf petioles and inflorescence stems, whereas RNA interference-mediated silencing o...

متن کامل

Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification.

ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011